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Abstract

Testing can be used during the software development process to maintain fidelity between
evolving specifications, program designs, and code implementations. We use a form of
specification-based testing that employs the use of an automated theorem prover to
generate test templates. A similar approach was developed using a model checker on state-
intensive systems. This method applies to systems with functional rather than state-based
behaviors.  This approach allows for the use of incomplete specifications to aid in
gencration of tests for potential failure cases. We illustrate the technique on the cannonical

triangle testing problem and discuss its use on analysis of a spacecraft scheduling system.
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1. Introduction

The major limitation of conventional testing is that it can only show the prescnce of errors
but never their absence[1]. This is because we usually have an infinite (or very large) Input

Spacc and testing over all possible values of input is impractical.

Testing is a process of verifying whether a program docs what it is supposed to do. In other
words, a program is corrcct if it meets its requircments. Typically software requirements
will be specified in a natural language and can be translated into a set of propertics that the
softwarc (or program) should exhibit. We claim that a program is partially correct if it
exhibits all the properties stated in the rcquircmcms'spccificalion. While it is possible to
specify a program in a formal specilication language and verify whether the specification

exhibits the required propertics or no, its uscfulness is limited for the following rcasons:

Inconsistencies between the formal specification and the program: There are a number of
rcasons why the actual program and the formal specification can be inconsistent. One
possibility is that the specification was developed at an carly stage in the life cycle of the
softwarc and the changes made in the later phases arc not reflected in the formal
specilication. Hence, proving that the formal specification exhibits a property does not

necessarily mean that the actual program cxhibits that property.
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Partial formal specification/verification: It is usually very expensive (and often
unnecessary) to specify a huge program completely in a formal specification language and
prove its correctness. We can specify only the critical sections in a formal language and
verify the partial specification. Properties cxhibited by the partial specification do not

necessarily mean that the program will exhibit them because of the inadequacy in detail.

Non-functional requirements: There could bc a number of non-functional requirements
that should be exhibited by the program. For example, there could be performance
constraints on the program. These propertics arc implementation specific and it is usually

inappropriate to prove that the specification exhibits these propertics.

For the above rcasons, we not only want to verify the functional correctness of the
specification but we would also want to gencrate test cases so that we can verify the actual
program for correctness. In this thesis, we proposc a method of generating test templates
for each of the functional propertics specificd in the requirements specification. A test
templatc can be thought of as a set of conditions on the Input Space. Testing the software
for any one particular instance of the template is minimally nccessary to prove that the

actual program cxhibits the corresponding property.

The remainder of this thesis is organized as follows: Chapter 2 discusses the related work.
Chapter 3 presents a simple example based on Myers cannonical triangle example that will

demonstrate our approach to test template generation. Chapter 4 describes the strategies for
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deriving test templates and structuring them into Test Template Hierarchy (TTH). Chapter
5 provides a detailed example based on the modified triangle specification. Chapter 6
presents a practical example and discusses the usefulness of our approach in the rcal world.
Chapter 7 presents an overview of this thesis and concludes with the scope for future work.
Appendix A presents an introduction to Prototype Verification System (PVS). Appendix B
presents the incorrect PVS model for the modificd triangle specification. Finally, Appendix
C presents the corrected model for the modificd triangle cxample and the gencrated test

templates.
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2. Related Work

Phil Stocks and David Carrington in their paper “A framework for specification based
testing” [2] suggest a method for deriving test templates from Z-specification and provide
a test template framework for structuring the tests. They define the Input Space (IS) of an
operation as the space from which input can be drawn, ie. IS represents type-compatible
input to the operation. The Valid Input Space (VIS) is the subsct of IS for which the
operation is defined. They claim that all the tests for an operation must be derived from the
operation’s VIS because the specification defines only what happens for input in the VIS.
Once the VIS of an operation is determined, they subdivide the VIS into subscts called
domains by applying testing stratcgies and heuristics. A template hierarchy is constructed
with the templates as nodes and strategics as cdges. After applying all the desired
strategies, cach instance of a terminal template in the hicrarchy graph is considered
equivalent to all other instances of this template for testing purposes. In their approach it is
not clear how the generated test templates relate to the properties stated in the
requirements. Hence it is not cvident whether the generated test templates are sufficient to

test for all the propertics stated in the requircments.

The formal specification language, Maribila [3], was designed by Computationl Logic, Inc

(CLI) and the Open Group Rescarch Institute (RI) with the goal to make it easy for
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software engineers to read and write Maribila formal specifications without specific formal
methods expertise. Maribila has a formally defined semantics. It is syntactically and
semantically equivalent to C++ or Java, but has language features that encourage
abstraction. Maribila formal specifications can be used to drive system testing and the

technique is called specification-based evet-trace testing.

In the cvent-trace testing methodology, the system architecture is formally described as an
abstract program in the formal language Maribila. The Maribila abstract program specifies
that the system will take certain actions, and constrains acceptable orderings of these
actions. The abstract program steps can be viewed as significant events that must take
placc in the coursc of system exccution. The abstract program defines a [inite state
machinc that will accept or reject an cvent trace. An cvent trace is a stream of event
occurcnces. A finite state machine is crcated for cach system interface specified in
Maribila by a prototype tool, acceptor generator. The tool identifics the events suggested
by the specification, and defines a program interface for announcing the events from the
systcm code basc at run time. The programmer instruments the code base to emit the
appropriate cvent announcements and ensurcs that the expected events are announced in a
corrcct order. The instrumentation also records which states of the finite statc machine

have been visited, giving a metric for coverage of the test suite.

Daistish [4], a tool developed by Merlin Hughes and David Stotts, creates cffective test

drivers for programs in languages that use side effects to implement Abstract Data Types
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(ADTs). The tool performs systematic algebraic testing. The basic approach is to select
appropriate data points (values for parameters to the operations called in axioms), compute
the right and left sidcs of an axiom separately, and then comparc the results. A correct

implementation should produce values for cach side that arc cquivalent.

Diastish is a Perl script which processes a formal specification of an ADT along with the
code for an object implementing the ADT, to produce a test driver. The specification files
contain axioms and test vectors (sample instantiations of types used by the axioms).
Daistish scans all specification files and code is produced to instantiate each test vector and
cvaluate cach axiom. The axioms are then called with cach possible valid combination of
paramcters available from instantiations of the test vectors. If an axiom fails, test generator
will output the axiom name that failed and the names of data points used as parameters.

Otherwise statistics are collected for each axiom and summarized at completion.

Bruno Dutertre and Victoria Stavridou describe the application of a formal approach to the
specification and analysis of a salety critical system in their work “Formal Requirements
Analysis of an Avionics Control System™ [5]. Their work is based on an Air Data
Computer (ADC) that consisted of two channels. A primary channel performs all ADC
functions during normal operation and a backup channel takes over when the primary fails.
The functional requirements were specified and verificd using the Prototype Verification

System (PVS).
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3. A Simple Example

In this scction we’ll illustrate test template generation with a simple example. Consider the

following specification:

Given three integers representing the three edges of a triangle, determine
the type of the triangle (i.e. Equilateral, Isosceles or Scalene). If all sides
of the triangle are equal then it is Equilateral. If nvo sides are equal and
the third side is different from them then it is Isosceles. If all sides are

different then it is Scalene.” [6]

As the specification clearly states that the 3 integers represent the edges of a triangle, we
don’t need to test whether the 3 integers form a valid triangle. Note that it is also implied in
the above specification, that any triangle will be one of the 3 types specified. We'll come
back 1o this specification in chapter 5 and generalize it to handle inputs that do not form a

triangle.

In the PVS specification given in Figure 1, we declare x, y, and z as variables of type
POSITIVE INTEGER. We also declared an enumeration type named ‘Triangle_type’
having values ‘Scalene’, ‘Isosceles’, ‘Equilateral’ and ‘Error’. Note that even though any

triangle will be onc of the 3 types Equilateral or Isosceles or Scalene, we added ‘Error’ in
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our enumeration type because it is useful in proving certain properties. The function
“Triangle’ accepts 3 positive integers as parameters and returns the type of the triangle.
Note that the function ‘Triangle’ will return “Error” if the triangle is not Equilateral or

Isoccles or Scalene.

An attempt to prove the property “It is never the case that the triangle is not cquilateral or

. o . *
isosceles or scalene” yiclds the following two proof goals

proof goal 1: Given x, y, and 7 are integers and y = z, prove that x = z.

proof goal 2: Given x, y, and z are integers and x = z, prove that x =y.

The above proof goals could not be proved since the statements (y=2)=>(x=2),(x=2)
=> (X = y) for any three positive integers X, y, and z could not be shown. So we conclude
that the PVS specification shown in Figure 1 will not satisly the above stated property. We

can generate the following test templates from the above prool goals*:

Test template-A: x, y, and z are positive integers and (x, y, z) form a triangle and
(y = z) and not(x = 7)
Test template-B: x, y, and z are positive integers and (x, y, 7) form a triangle and

(x = 7) and not(x = y)

* There will be three more proof goals generated by PVS that are automatically proved by the PVS theorem-
prover. Only the two proof goals mentioned here could not be proved automatically.
t The actual strategy for generating test templates is described in chapter 4.
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triangle : THEORY
BEGIN

x, v, 22 VAR pos

Triangle_type: TYPE = {Scalene, Isosceles, Equilateral, Error}

Triangle(x, ¥, z): Triangle_type =
IF x =y AND y = z THEN Equilateral
ELSIF x = y AND z /=y THEN Isosceles
ELSIF x /= y AND y /= 2 AND = /= x THEN Scalene
ELSE Error
ENDIF

Conj: CONJECTURE Triangle(x, y, z) /= Error
END triangle

Figure 1: Incomplete specification of Triangle problem inPVS

Note that “(x, y, z) form a triangle” mcans that the three positive integers X, y, and z when

interpreted as representing the lengths of the sides, form a triangle.

These test templates correspond to the cases where the specification (given in Figure 1)
fails to exhibit the property. Note that three integers (when interpreted as representing the

lengths of sides) form a triangle if the sum of any two is grcater than the third.

Instances of the template-A consist of all the 3 integer tuples of the form (x, y, y) where x
and y are two different positive integers and (x, 'y, y) form a triangle. ie. Instances of

template-A consist of the infinite set

{(1,2,2), (1,3,3), (1,4,4), ...
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(2,1,1), (2,3,3), (2,4,4), ..

Similarly, the instances of template-B will consist of all the 3 integer tuples of the form (x,
y, x) where x and y are two different positive integers. Instances of template-B consist of

the infinite set

{ (1,2,1), (1,3,1), (1,4,1), ...
(2,1,2), (2,3.2), (2,4,2), e

}

Note that these two test templates correspond to the case of Isosccles triangles (in both the
cases we have two equal sides and a different third side). As this is a very simple example,
you can scc that in the model (ie., PVS specification) we did not consider all the possible
cases for Isosceles triangle. All the possible cases of two cqual sides and a different side

would be:

((x=y)AND (y /=2)) OR
((y=7) AND (x/=2)) OR
((x=2) AND (x/=y)).

But we specified only the condition ((x = y) AND (y /= 7)) in our model and did not
specily the other two conditions. So our model was incorrect. We generated test templates
corresponding to these two cases. The specification after fixing the above error is given in

Figure 2.
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The above mentioned property can be easily proved based on the corrected specification.

Now, we can try to prove the other 3 propertics:

1. Ifall sides arc equal then Equilateral.
2. Il two sides are equal and third side is different then Isosceles.

3. If no two sides arc cqual then Scalene.

Since this is a very simple example and the above properties are trivially true for the model
in Figure 2, the gencrated test templates will be no more than the specified conditions in
each of the conjectures. Hence, the test templates corresponding to the above 3 properties

will be:

Template-1: x =y AND y =z (X, y, and z arc intcgers)
Template-2: (x =y) AND (y /=12)) OR ((y = z) AND (x /= 7)) OR
((x = 7) AND (x /=y)) (x, y, and 7 are integers)

Template-3: x /=y AND y /=2 AND z/=x (X, ¥, and z arc intcgers)
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triangle : THEQRY
BEGIN
x, ¥, 22 VAR pos
Triangle_type: TYPE = {Scalene, Isosceles, Equilateral, Error}

Triangle(x, y, z): Triangle_type =
IF x = y AND y = z THEN Equilateral
ELSIF ({(x = ¥y} AND (v /= z)) OR

((y = z) AND (x /= z)) OR

((x = z) AND (x /= y}) THEN Isosceles
ELSIF x /= y AND y /= 2 AND z /= x THEN Scalene
ELSE Error
ENDIF

conj: CONJECTURE Triangle(x, y, z) /= Error

conjl: CONJECTURE (x =y AND y = z) IMPLIES
Triangle(x, v, z) = Equilateral

conj2: CONJECTURE ((x = y) AND (y/=z)) OR ((y = z) AND (x /= z)) OR
((x = 2) AND (x /= y)) IMPLIES Triangle(x,y,z) = Isosceles

conj3: CONJECTURE (x/=y AND y /= 2 AND z /= x) IMPLIES
Triangle(x,y,z) = Scalene

END triangle

Figure 2: Corrected specification of the ‘triangle’ problem in PVS

Each of these templates consists of an infinite set of instances. Any one particular instance
of a template is sufficient to prove that the software exhibits a particular property. The
actual procedure for generating test templates from the proof goals is described in the next

chapter.
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4. Heuristic Approach to Test Template Generation

We suggest a new mcthod of testing software based on the formal specification. We used
the Prototype Verification System (PVS) and its in-built thcorem prover to derive test
templates corresponding to the properties stated in the requirements. After devcloping the
PVS specification, we specify the properties stated in the requirements as conjectures.
Using the theorem prover we try to prove that the conjecture is TRUE, i.e. we'll prove that

the property holds for the PVS specification.

4.1 Proof Trees
PVS proof checker provides a collection of proof commands that can be combined to form

proof strategics. Applying proof commands in order to prove a conjecture might yield:

1) another proof goal that needs to be proved in order to prove the original proof goal.
2) more than one proof goal. In which case, the proof is split into branches with sub goals.
In order to prove the original proof goal we have to prove all the sub-goals.

3) termination of that proof branch in the casc where the proof goal is trivially TRUE.
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From the proof commands that are applied to the conjecture a proof tree is constructed

where all the leaves in the proof tree are recognized as TRUE.

Consider the trivial example of specifying the function Division_Result that will return the

type of integer division.

Given two integers x and y, return the type of ‘x/y'. If ‘y = 0’ the function
should return ‘Error’, otherwise it should return ‘Positive’ or ‘Negative’

or ‘Zero’ depending on the value of ‘x/y’.

The PVS specification for the above function is given in Figure 3. The function
Division_Result accepts two integer parameters x and y. If ‘y =0’ then the function returns
“Error”. If ‘x =0’ (and y /= 0) the function rcturns “Zero”. If both x and y are positive or

ncgative then the function returns “Positive” otherwise it returns “Negative”.

In the conjecture conjl of Figure 3, we try to prove that the function Division_Result will
not return “Error” if ‘y /= 0’. The proof trec corresponding to this conjecture is depicted in
Figurc 4. The nodes of the proof tree are numbered and the proof command applicd at each

node is also shown.
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examplel : THEORY
BEGIN

X, y: VAR int
Return_type: TYPE = {Positive, Negative, Zero, Error)
% Returns the type of x/y
Division_Result(x, y): Return_type =
IF y = O THEN Error
ELSIF x = O THEN Zero
ELSIF (x> 0AND y > 0) OR (x < 0 AND y < 0) THEN Positive
ELSE Negative
ENDIF
conjl: CONJECTURE not(y = 0) IMPLIES Division_Result(x, y) /= Error

END examplel

Figure 3: PVS specification of Division_Result function

Each node of the proof tree is a proof goal. Each proof goal has a sequent consisting of a
sequence of formulas called antecedents and a sequence of formulas called conscquents. In

PVS, such a sequent is displayed as”

{-1} A1
{-2} A2

[-3] A3

" The antecedents are assigned negative numbers and the conscquents arc assigned positive numbers. The
braces surrounding the number indicate that the formula has changed from the parent sequent. The square
brackets surrounding the number indicate that the formula is repeated from the parent sequent.
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The scquent formulas Ai are the antecedents and the Bj are the consequents. The
interpretation of a sequent is that the conjunction of antecedents should imply the

disjunction of the conscquents, i.e.
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(ATMA27A34 . )-->BIVB2VB3V..)

For cxample in the proof tree (shown in Figure 4) for conjl of Division_Result at node 12

we have the following sequent

{-1} NOT((x!1> 0 AND y!1> 0) OR (x'1 <0 AND ¥!1 < 0)) AND (Negative = Error)

1] x1=0
2] yi1=0
3] (y!1=0)

i.c., we have to prove that the following implication is TRUE (shown after replacing the

skolemized variables with actual variables)

NOT((x >0 AND y > 0) OR (x < 0 AND y < 0)) AND (Negative = Error) --> x=0)V(y=0)

The above implication is TRUE since the condition (Negative = Error) is Flase on the left-

hand side of the implication.

Note that the root of the proof tree is a sequent with the conjecture that we are trying to
prove as the conscquent and with no antecedents. PVS proof steps build a proof tree by

adding subtrees to Ical nodes.
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We claim that it is possiblc to generate test templates based on the proof tree that would
test for the property corresponding to the conjecture we proved (or failed to prove). While

generating test templates we need to consider the two cascs:

1) when we fail to prove that a property is exhibited by the model

2) when we succeed in proving that the model exhibits a property.

4.2 Strategy for generating test templates from invalid proofs

If we fail to prove that a property is exhibited by the model, then there exist one or more
proof goals in the proof tree that could not be proved to be TRUE, i.e. there are one or

more scquents that are false.” We note that the implication of the form

(A1T"A27A37...)-->(BI1VB2VB3V..)

will be FALSE only when the left-hand side of the implication is TRUE and the right hand

side of the implication is FALSE. Hence we have the condition

(AI*A272A37..)ANOTBI1VB2VB3V...)

" Note that the failure to prove a property does not necessarily mean that one or more sequents are false, It
could also happen when we don't have enough information in the model (o prove the conjecture. We are not
interested in that casc.
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which will be the test template when we fail to prove the proof goal.

4.3 Strategy for generating test templates from valid proofs

To generate test templates when we succeed in proving a conjecture, the gencral approach
is 10 look at the Icaves of the proof tree. Each leaf is a sequent that is TRUE'. The

implication

(A1"A27A347..)-->(B1VB2VB3V..)

will be TRUE if the left hand side is false or the right hand sidc is TRUE,

i, not(A1*A22A3*...)V(BIVB2VB3V...)

i.e., not(A1) Vnot(A2) V not(A3) V..VB1VB2VB3 V...

The above condition is TRUE if one or more terms are TRUE. In general, if we have n
terms, there are 21 ways the above condition could be TRUE. For cach of those
possibilitics we will have a test template. For instance, in the above example, one test

template would be

not(Al) * not(A2) » not(A3) ... "B1 *B2~AB3A..
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which corresponds to the casc where all terms of the condition are TRUE. Another test

template would be

(A1) * not(A2) * not(A3)* ... *B1~B2*B3*..

which corresponds to the case where all terms except the first term are TRUE. Note that

some of these test templates will have no instances. For example, the test template

(x> 2) A not(x > 2)

has no instances.

In this approach we’ll be gencrating a large number of test templates, exponential in the
order of the number of scquent formulas (or conditions). Most of the test templates will
have no instances because we are negating the antecedents that are usually the facts
specificd in the model’. We suggest a different approach that will generate fewer test
templates. To understand the new approach, we need to understand how PVS generates

proof goals when we try to prove a particular property.

" If a proof goal could not be proved (because the sequent is FALSE), then the “strategy for generating test
templates from invalid proofs” should be applied.

' One or more of the antecedents could be wrong in the case where we are considering a branch of the proof
tree that does not cxhibit the property we are testing for.
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Consider the conjecture conjl of Division_Result. In conjl, we are trying to prove the
property “The function does not return Error when the divisor is non-zero”. When we try
to prove this property using PVS proof checker, PVS will check all possible execution
paths through the program and compares the output of the model for each exccution path
with the symbol ‘Error’. For the Division_Result example specification there are four
exccution paths through the program corresponding to the four possible outputs ‘Error’,

“Zero’, ‘Positive’, and ‘Negative’.

For instance, consider the sequent at node 10 of the proof tree shown in Figure 4:

{-1} x!'1=0 AND (Zero = Error)

(1 yi1=0

2] (11=0)

This scquent belongs to a proof branch that will yield the output ‘Zero’. This proof branch
satisfics the condition “divisor is non-zero” and returns the symbol ‘Zero’. PVS was
comparing the symbol ‘Zero’ with ‘Error’ to sec whether they were equal. In which case,
we will fail to prove the above property. But the condition ‘Zero = Error’ (which means
that both the symbols “Zero” and “Error” are cquivalent) is trivially FALSE. Since the left

hand side of the implication is FALSE, the proof goal is TRUE.
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Similar sequents will be generated when PVS explores the execution paths that would
yicld the ouput ‘Positive’ or ‘Negative’. In cither case the antecedent will be False and
hence the proof goal will be TRUE. Now, we consider the cxecution path that yields the
ouput ‘Error’ (i.c., the case where the divisor is zero) which corresponds to the sequent at

the node 7 of Figure 4

[-1] y!1=0AND TRUE

1] (y!1=0)

In this case, we’ll be able to prove the implication since the right hand side of the
implication is a sub-condition of the left-hand side of the implication. The proof goal is

TRUE since the consequent ‘y = 0 appears as a part of the antecedent.

So we have the following two types of proof goals that are trivially TRUE.

1) The scquent has atleast one antecedent that is FALSE. In this case the left-hand side of

the proof goal will be FALSE and hence the proof goal will be trivially TRUE.

2) One or more consequents also appear as antecedents. In this case, the right hand side of
the implication is a sub-set of the left-hand side of the implication. So whenever the
left-hand side of the implication is TRUE, the right hand side of the implication is also

TRUE. Hence the proof goal is TRUE.
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As we shall demonstrate, we can easily find out whether any of the antecedents are false.
The falsc antccedents shall be ignored whilc generating the test templates. If we have one
or morc consequents that appear also as antecedents then they shall also be ignored. After
removing the antccedents and consequents as explained above, the test template

corresponding to a sequent of the form

(A1T*A27A34 .., )->BIVB2VB3V..)

would be

(A1~A27A3% ... )" not(B1VB2VB3V...)

1c.

A1~ A27 A3~ ... 7 not(Bl) * not(B2) A not(B3) A ...

However, this gencral approach will not always work. The reason being that there are a
number of ways to prove a conjecture, and hence the proof tree for any conjecture is not
unigue. The test templates generated for different proof trees of the same conjecture differ
in the detail they have. i.e., if we generate test templates bascd on two proof trees A and B;
a single test template generated based on proof tree A might correspond to a number of test

templates generated based on proof tree B. Note that in the case where we fail to prove a
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proof goal, this not a problem because whatever the proof trec may be, it is sure to identify

the casc(s) for which the proof will fail.

Hence, we provide a heuristic approach to gencrating test templates for the case where we
succeed in proving the conjecture. We generate a test template corresponding to cvery leaf

of the proof tree as follows:

1. Prove the conjecture using only the fundamental rules (such as flatten and split). Do

not usc any strategics (such as ‘grind* and ‘ground’).

2. Add all the conditions in the antecedents to the test template except those that are

trivially FALSE.

For example, in the Division_Result proof, consider the sequent at node 10:

{-1} x!'1 =0 AND (Zero = Error)

1] y=0

2] (=0
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The condition “Zero = Error’ (which means that both the symbols “Zero” and “Error”
arc cquivalent) is trivially FALSE. So we ignore that condition and add (x = 0) to the

test template”.

[l there are consequents, add all the negated conscquents to the test template. Ignore the

consequents all of whose conditions appear as antecedents.

For example, in the Division_Result proof, consider the sequent at node 7:

[-11  y!1=0 AND TRUE

In this case, the consequent [1] has only one condition (y!l = 0) and that condition
appcars as part of the antecedent [-1]. So we ignore the consequent [1] while

gencrating the test template.

As another example, consider the sequent at node 13:

{-1}  ((x!1>0ANDy!1>0) OR (x!1 <0 AND y!1 < 0)) AND (Positive = Error)

2] y=0

" As we mentioned carlier, if the antecedent has two or more conditions joined by conjunction(s) then each
such condition should be treated as a separate antecedent.
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31 (1=0)

In this case, the condition (Positive = Error) is False in the antecedent {-1}, so wc ignore
that condition and add the rest of the conditions of {-1} to the test templatc (refer to
heuristic 2). None of the consequents appear as a part of any antecedent. So we negate and

add all the consequents. Since the consequents [2] and [3] arc the same, we can ignore [3].

4. Check whether the test template has enough conditions to define the input to the
program. If yes we have the test template corresponding to the leaf. If not, consider the
sequent immediatcly above that leaf in the same branch of the proof tree. If there is no
such sequent, then the leaf cannot produce a test template. Otherwise repeat steps 2, 3,
and 4 for this scquent. We repeat this process until we get enough conditions to clearly
define the input to the program. There is no such case in our simplc cxample

Division_Result.
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Gl
/ \
G2 G3
G4 G5

G6 G7

Figure 5: Skeleton of the TTH for conjl of Division_Result

5. I no leaf of a subtree could produce a test template then the root of the subtree must be

treated as a leal. There is no such case in our simple example Division_Result.

6. If there is only one skolemized™ variable corresponding to each original variable then
replace the skolemized variables with the original variables, otherwise replace each

skolemized variable with a unique variable name.

For example, if thc variable x appears as only one skolemized variable x!l, then
replace the skolemized variable x!1 with x. If the variable y appears as two skolemized

variables y!1 and y!2 then replace them with yl and y2 respectively.

Skolemization is a gencral technique to eliminate universal and existential quantifiers.
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7. Add any additional constraints given in the requirements. In the Division_Result
cxample, the additional constraints given in the requircments would be “x and y are

integers”.

4.4 Structuring the Test Templates

As we shall sce from Figure 7, for a simple problem like the ‘triangle’ example we have a
huge proof tree with approximately 50 leaves and each leaf lead to a test template. For a
complex problem with lots of nested conditional statements, the number of test templates

could casily become unmanageable. Hence we need to structure these test templates.

Since we gencerated test templates based on the proof tree, they have inherent hicrarchy
built into them. To arrange the test templates in hierarchy, remove all the nodes in the
proof tree cxcept the leaves and the nodes that join different branches of the proof tree.

Then we will have a skeleton for the Test Template Hierarchy (TTH).

Consider the example PVS specification of Division_Result (refer to Figure 3). If we
rcmove all the nodes except the leaves and the nodes that join different branches from the
proof tree of conjl (refer to Figure 4), we will have the skeleton of TTH for conjl.
Skeleton of TTH for conjl is depicted in Figure 5. ‘G1° corresponds to the goal numbered

6 in the proof tree (refer to Figure 4). G2, G4, G6, and G7 in the TTH skeleton correspond
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to the Icaves numbered 7, 10, 13, and 14 in the proof tree respectively. The nodes G3, and

G5 in the TTH skeleton correspond to the nodes 9, and 12 in the proof tree respectively.

To get the TTH, place cach test template at the Ieaf that generated the template. If all the
child nodes of a node have some condition in common then remove that condition from all
the child nodes and put it at the parent node. Starting at the leaves repeat this procedure
upto the root node. When we are done, we will have the TTH graph with conditions placed

at the nodes.

The conjecture, conjl, of the PVS specification Division_Result (shown in Figure 3) yields

the following test templates”™

L N | ) B U OO derived from the leaf no. 7 of proof tree
T2: (Xx= 02 y/=0)eerenniincrrnrcivisinenennnenninnne derived from the leaf no. 10 of proof tree
T x>02y>0)V(<0ry<0) A (x/=0) A (y/=0)......... derived from the leaf no. 13

Td:not(x>02y>0) not(x <02 y<0)*(x/=0)* (y /= 0).derived from the leaf no. 14

Now, we place T1 at the node G2 of TTH skeleton (refer to Figure 5), T2 at G4, T3 at G6,
and T4 at G7. Since both the nodes G6 and G7 have the condition (x /= 0O~2r(y/=0)in
common, we move that condition to their parent node GS. Then we’ll have the condition (x
>()"y>O)V(x<O"y<0)alG6andthcconditionnot(x>0"y>0) Anot(x <0*y<(0)

at G7, and the condition (x /= 0) » (y /= 0) at G5. Now, both the nodes G4 and G5 have the

" The actual procedure of deriving these test templates is exemplified in the next section.
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condition (y /= 0) in common. So we move that condition to their parent node G3. Then we
will have the condition (x > 0) at G4, and (x /= 0) at G5, and (y /= 0) at G3. Sincc G2 and
G3 have no conditions in common we have finished building the TTH. The final TTH is

shown in Figure 6.

To get back a test template from the TTH, we select a path from the root node of the TTH
graph 1o a leaf and take the conjunction of all the conditions that appear in that path.
Arranging test templates in this manner gives us the convenience of choosing test

templates with a specific property.

In the above example, if we are interested only in the test cases that correspond to non-zero
input. Then we have to look for the conditions (x /= 0) and (y /= 0). So, the path from the
root node of TTH, Gl, should include both the nodes G3 and G5, since G3 has the
condition (y /= 0) and G5 has the condition (x /= 0). So we have the two paths (G1, G3,
G35, G6) and (G1, G3, G5, G7) which correspond to the test templates T3 and T4

respectively .

' Arranging the test templates into TTH is very useful in obtaining test templates with a particular property
when we have huge proof trees with lots of conditions.
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x=0 x=0

N

G>07y>0)V | | not(x>0~y=>0)»
(x<0*y<0) not(x<0*y=<0)

Figure 6: TTH for conj1 of Division_Result

5. A Detailed Example

In this scction we will demostrate the heuristic approach to generating test templatcs with

the ‘triangle’ example.
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5.1 Generating Test Templates for Invalid Properties

We will first consider the case where we fail to prove the property, i.c. we will have one or

more proof goals that could not be proved to be TRUE.

In ¢his case, if we have a sequent of the form

(A1 *A272A37...)->B1VB2VB3V..)

the test template would be (refer section 4.2)

(AT A22A32..)ANOTB1VB2VB3V..)

When we atiecmpted to prove the property “It is never the case that the triangle is not
Equilateral or Isosceles or Scalene” based on the triangle specification depicted in Figure

1, we failed to prove the following proof goals:

proof goal 1: Given x, y, and z are integers and y = z, prove that x = z.

proof goal 2: Given x, y, and z are integers and x = z, prove that x = y.

The actual sequents corresponding to these proof goals are
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Sequent 1:

[-1] integer_pred(x!1)
[-2] integer_pred(z!1)

[-3] yl=21

[1] x1=2z21

Sequent 2:

[-1] integer_pred(x!1)
[-2] integer_pred(y!l)

[-3] (@@!'1=x'1)

x!'1, y!1, and z!1 are the skolemized variables for x, y, and z respectively.
integer_pred(x!1) means that x!1 is an integer predicate. Based on the strategy

described in scction 4.2, we can derive the following test lemplates.

T1: integer(x)  integer(z) * (y = z) * not(x = z)

T2: integer(x) » integer(y) * (z = x) » not(x = y)
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Note that the Valid Input Space (VIS) consists of all and only those (x, y, z) where x, y,
and 7 arc integers and (x, y, 7) must form a valid triangle (specified in the requirements).
So we have to impose these additional conditions on T1 and T2. Now, the templates will

be

T1: integer(x) » integer(y) * integer{z) * Form_Triangle(x, y,z) * (y=12) * not(x = z)

T2: integer(x) * integer(y) * integer(z) * Form_Triangle(x, y, 7} * (z=x) * not(x = y)

These two templates correspond to the cases where the modcl fails to exhibit the property

“It is never the case that the triangle is not equilateral or isosceles or scalene”.

5.2 Generating Test Templates for Valid Properties

We demonstrate test template generation in the case of valid proofs with the following

slightly modified requircments specification for the same triangle problem.

“Write a program that reads 3 integer values per line from input. The 3
values are interpreted as representing the lengths of the sides of the
triangle. The program prints a message that states whether a triangle is

Scalene, Isosceles, or Equilateral.”

Now, the program has to deal with invalid input. When we modcl this problem, we have to

decide on the level of abstraction. For example, we can model this problem in two ways. In
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the first method we can write two separate functions; one to validate the input, ie. to
ensure that input contains three integers and another function to check whether a given set
of threc integers form a triangle. In this approach we don’t have to actually parsc the input
string to get the integers, we just need to make sure that the input contains three integers.
In the second method we actually parse the input to get three integers and then check
whether they form a triangle. We took the sccond approach because it will be a better way

of demonstrating test template generation. The PVS specification is given in Appendix B.

5.2.1 Assumptions

As PVS does not have any in-built functions to handle strings or character arrays, we
decided to work with arrays of ASCII codes instead of arrays of characters. The
requircments specification does not have cnough implementation details, for example it
docs not specify what the program output should be if the input does not have three
intcgers. So the implementation has to make some reasonable assumptions. The model

given in Appendix B works under the following assumptions

1) the numbers in the input line are separated by one or more spaces.
2) each number can be optionally preceded (immediately) by a ‘+’ or *-* sign.
3) any leading blank spaces in the input line will be ignored.

4) every input line must be terminated by the NL character.
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4 *

5) any character other than (‘0°-9°, * *, ‘4’ or -%) shall result in the error
‘ERR_INV_ARG’. If a ‘+" or “-‘ sign appears it must be immediately followed by a

number (consisting of one or more digits).

6) Il the input line is valid (i.e. satisfies condition 5) but has greater than three numbers

then the error ‘ERR_MORE_ARGS’ shall be returned.

7) If the input linc is valid (i.e. satisfics condition 5) but has less than three numbers then

the error ‘ERR_FEW_ARGS’ shall be returned.

8) Il the input line is valid (i.e. satisfics condition 5) and has exactly three numbers and if
the three numbers do not form a triangle then the error ‘ERR_NOT_A_TRIANGLE’
shall be returned. Three integers form a triangle if the sum of any two integers is

greater than the third integer.

9) Il the input linc is valid (i.e. satisfies condition 5) and has exactly three numbers and if
the three numbers form an equilatcral triangle then the program shall return

‘Equilateral’.

10) If the input line is valid (i.c. satisfies condition 5) and has exactly three numbers and if

the three numbers form an isosceles triangle then the program shall return ‘Isosceles’.

11)If the input line is valid (i.e. satisfics condition 5) and has exactly three numbers and if

the threc numbers form a scalene triangle then the program shall return ‘Scalenc’.

12) If the input line is valid (i.e. satisfies condition 5) and has cxactly three numbers and if

the three numbers form a triangle but the triangle is not equilateral or isosceles or
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scalene, then there is an error in our model (since any triangle will be onc of the 3

types). In such a casc the crror ‘Error’ shall be returned.

The model (given in Appendix B) has two main functions ‘Parse_Input’ and ‘Triangle’.
‘Parse_Input’ is a recursive function that takes the array of ASCII codes as input and
parses it to integers. The other parameters to this function are the current index with in the
array (since it is a rccursive function), the number of integers found till the current index,
whether a sign is found, whether the previous character is a digit or not, an array of the
integers found till the current index, sign, and ‘inputlen’. If the input line has three integers
then the function ‘Triangle’ is called with those three values: otherwise an appropriate
error message is returned. ‘Triangle’ function checks whether the three integers form a
triangle, if so returns the type of the triangle. The constant ‘MAXLEN’ is the maximum
input length and the input array indices have values in the range (0, MAXLEN - 1). We

call the function ‘Parse_Input’ with the input (array of ASCII codes) and the indcx O.
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Figure 7: Partial proof tree for conj6 of modified triangle example
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As we mentioned carlier, if the model rcturns ‘Error’ then there is an error (refer to
assumption 12) in our model. Lets try to prove the property “The model will not return
‘Error’ for any input”. Observe that ‘Error’ is returned by the function ‘Triangle’ when
the three integers form a triangle but the triangle is not equilateral or isosceles or scalene.
Also note that the ‘Triangle’ function is called by the function ‘Parse_Input’ only when the
index equals input length and the input has exactly three integers. So, we need to prove
only for the case when index equals inputlen-1 (since the last character must be a NL
characlcr).* So, we need to prove that “The model will not return ‘Error’ when we
invoke ‘Parse_Input’ with the input (array of ASCII codes) and with index = inputlen -

1.

5.2.2 Generating Test Templates

In PVS, a conjecture can be proved in a number of different ways. For example, the above

property can be proved with the single strategy

(REPEAT* (THEN* (EXPAND “Parse_Input’’) (GRIND))).

To generate the test templates we nced a detailed proof, i.e. we need to prove the
conjecture using only the very fundamental rules (such as ‘flatten’, and ‘split’) and we do

not want to use stratcgics. We proved the above property and the proof tree is given in

" Proving the property "The model will not return *Error’ for any input” is cumbersome, so we simplified it.
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Figure 7°. Proof tree does not show the sequents but it shows only the rules applied at each
proof goal. The detailed proof with all the sequents is too lengthy to present here’. Here we

will show only some sclected seugents to demonstrate the conceplts.

Consider the sequent 19 in Figure 7:

{-1} edges!1(0) = edges!1(1)

{-2} edges!1(1) = edges!1(n!1) * sign!1

{-3} Error?(Equilateral)

[-4] ((edges!1(0) + edges!1(1)) > edges!1(n!1) * sign!l)
[-5] ((edges!1(1) + edges!1(n!1) * sign!1) > edges!1(0))
[-6] (edges!1(0) + edges!1(n!1) * sign!l > edges!1(1))
[-7] inputlen!l>=0

[-8] integer_pred(n!l)

[-9] integer_pred(sign!l)

[-10] valid!1

[-11] a!l(inputlen!l-1) =32

[-12] (1+n!1=3)

" In Figurc 7 we did not present the complete proof tree. The complete proof tree could be found at the URL:
http:/fwww.cs wvu.cdu/~pkancher/thesis/fig7.ps

' The complete prool is available at the URL: hutp://www.cs.wvu.edu/~pkancher/thesis/proof6.6.txt
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edges(0), edges(1l) and edges (2) are the three integers that represent the three
sides of the triangle. Note that the last antecedent [-12] indicates that (1 + n = 3) or
(n = 2). So in this scquent, edges (n) refers to edges (2). The reason why we are
multiplying edges (2) with ‘sign’ in all the antecedents is that in our model, we allowed
the numbers to be preceded by an optional sign. After we parse the number we are
multiplying it with +1 or -1 depending on which sign preceded that number. For
convenience, we will refer to edges (0), edges (1) and ‘edges(2) * sign’ as

e0, el and e2 respectively.

The first two antecedents {-1} and {-2}

{-1} edges!1(0) = edges!1(1)

{-2} edges!1(1) = edges!1(n'1) * sign!1

mcan that e0 = el and el = e2. The third antecedent {-3}

{-3} Error?(Equilateral)

means that the symbol ‘Error’ is same as the symbol ‘Equilateral’, which is FALSE.

The next three anlecedents
[-4] ((edges!1(0) + edges!1(1)) > edges!1(n!1) * sign!1)

[-5] ((edges!1(1) + edges!1(n!1) * sign!1) > edges!1(0))
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[-6] (edges!1(0) + edges!1(n!1) * sign!1 > edges!1(1))

mean that (¢0 + ¢l > e2), (¢l +¢2 > e0) and (c0 + €2 > cl). The next three antecedents do
not rcally contribute anything to the test template and can be ignored. The last three

antecedents

[-10] valid!1l
[-11] a!l(inputlen!l - 1) =32

[-12] (1+n!1=3)

mean that valid is TRUE, a (inputlen - 1) = * ‘andn = 2.

Now let’s construct the input string based on these conditions. We know that the
a(inputlen) = ‘\n’ or NL (refer to assumption 4). Since ‘valid’ is TRUE, we are
currently parsing a number. In other words, the character preceding the current character,
which is ‘inputlen - 1’ is a digit. As we can see from the specification of the
conjecture, we are interested only in the ‘inputlen - 1’ character of the input string.
So we got specific conditions that clearly specify the ‘inputlen - 1’ character. As we
don’t have any information on the sign preceding the numbers, we will assume that the
numbers can be optionionally preceded by the sign (either ‘+* or “-*). ‘n = 2’ indicates that
there were two integers preceding the number that is currently being parsed. So the input

string would of the form:
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IS = “(B}[s]D{D)B{B}[s]D{D}B{B}[s]D{D}B\n"*

where

B : a blank space

{B} : zero or more blank spaces

[s] : optional sign (i.e. either ‘4’ or ‘- character)
D :adigit[0-9]

{D} : zero or more digits

‘\n’ : newline character

The three D{D} substrings of the above input string represent the three numbers.

A sample input string of this format will look like

“23 482376 -7635\n".

Note that we gencrated this input string based on just the last three antecedents of the
scquent. We already mentioned that the three antecedents [-7], [-8] and [-9] are trivial and
hence they can be ignored while generating the test template. The conjunction of the

antecedents from [-1] to [-6] ignoring {-3}, since it is FALSE (refer to heuristic 2), give

(e0=¢€l)* (el =€2) * (e0 + el >e2) » (el + €2 > el) A (eD+e2>el)

So the complete test template corresponding to this sequent would be:
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Ti: (e0=el)"(e1=e2)"(e0+e1>e2)"(e1+e2>e0)"(e0+e2>e1) AlS =
“{B}[s]D{D}B(B)}{s]D{D}B{B}{s]D{D}B\n"’

which refers to the case of “Equilateral Triangle”.

As another example consider the sequent at node 24 (shown in Figure 7):

{-1} ((edges!1(0) = edges!1(1)) AND (edges!1(1) /= edges!1(n!1) * sign!1))
[-2] Error?(Isosceles)

[-3] ((edges!1(0) + edges!1(1)) > edges!1(n!1) * sign!l)

[-4] ((edges!1(1) + edges!1(n!1) * sign!1) > edges!1(0))

[-5] (edges!1(0) + edges!1(n!1) * sign!1 > edges!1(1))

[-6] inputlen!l >=0

[-7] integer_pred(n!1)

[-8] integer_pred(sign!1)

[-9] wvalid!1

[-10] a!l(inputlen!l - 1) =32

[-11] (1+n!1=3)

[1] edges!1(1) = edges!1(1) AND edges!1(1) = edges!1(n!1) * sign!1

As in the previous case, the antecedent [-2] is FALSE and the antecedents [-6] to [-8] are
trivial and can be ignored while gencrating the test template. The antecedents [-9] to [-11]

give the same input string as in the previous case. Note that the only consequent [1], has



Generating Test Templates via Automated Theorem Proving 46

two conditions joined by conjunction. Only the first condition appears in the antecedent [-

1]. So the conscugent [1] should be negated and added to the test template. The complete

test template for this sequent would now be

T2: (e0=el) " (el /=€2) " (eD+el>e2) " (el +e2>el) * (el +e2>el) A

not((e0 = el) » (el = e2)) A IS = *“{B}[s]D{D}B{B}[s]D{D}B{B)}[s]D{D}B\n’*

le.,

T2: (e0=el) " (el /=€2) " (el +el>e€2) (el +e2>e0) * (el +e2>el) A

(0 /= e1) V (el /= €2)) A IS = *“{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B\n"

The condition ((c0 /= e1) V (el /= e2)) will be TRUE if one or both the terms arc TRUE.

Hence we have the following three possibilities:

(e0 /=el) is TRUE and (el /= ¢2) is FALSE.
(e0 /= el) is FALSE and (el /= €2) is TRUE.

(e0 /= el) is TRUE and (el /= e2) is TRUL.

Corresponding to these three cases, we will have the following three templates
T2a: (e0=el)*(el/=e2)* (eO+el>e2) " (el +e2>e0) * (e +e2>el) A

(e0 /= e1) * not(el /= €2) ~ IS = “(B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B\n”

T2.b: (e0=el) " (el /=€2) * (e0+el>e2) " (el +e2>e0) * (e0+e2>el) A
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not(e0 /= el) A (el /= €2) * IS = *{B}[s]D{D}B(B}[s]D{D}B(B}{s|D{D}B\n”’

T2.c: (ell=el) M (el /=e2) A (eD+el>e2) A (el +e2>e0) *(eD+e2>el) A

(¢0 /= e1) A (el /= €2) A IS = “(B)[s]D{D}B{B}[sID{D}B{B}s]D{D}B\n”

In T2.a and T2.c, we have two terms (e0 = el) and (e0 /= el) joined by a
conjunction and hence these templates cannot have any instances. So we can ignore T2.a,

T2.c. Now, rewriting T2.b we have

T2: (e0=el) A (el /=€2) " (e0+el>e2) A (el +e2>e0) * (e0 +e2>¢el) A

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B\n"

Which corresponds to onc of the cascs of “Isosceles triangle”.

In the same way, test templates generated for the sequents 25, 26, 30, 32, 34, 35, 36 (refer

to Figurc 7) would be respectively T3, T4, TS, T6, T7, T8, and T9 shown below:

T3: (el=e2)* (el /=€e2) *(e0+el>e2) " (el +e2>el) " (el + €2 >el) »

IS = “{B}{s|D{D}B{B}{sID{D}B{B}[s]D{D}B\n"

Td: (e0=e2) ~ (el /=el) * (e +el>e2) * (el +e2>el) * (el +e2>el) A

IS = “{B}{sID{D}B{B}[s]D{D}B{B}[s]D{D}B\n”

TS:(e0/=el)r(el/=e2) " (e2/=e0) (e +el>e2) " (el +e2>€0) A
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(€0 + €2 > e1) * IS = “{B}{s|D{D}B(B}[s]ID{D}B{B}(s|D{D}B\n"

T6: (€0 + el > €2) » (el + €2 > e0) (eD+e2>el)
A not((e0 /=el) A (el /=e2) » (€2 /= e0)) » not((e0 = e1) * (el /=€2))
* not((el = e2) * (el /= e2)) * not((e0 = e2) * (e0 /= el))

" not((ed = e1) * (el = €2)) IS = “{B}[sID(D)B{B}{s]D{D}B(B){s]D{D}B\n”

Observe that the above template T6 does not have any instances.

T7: not((e0 + e1 > €2) * (el + €2 > e0) * (e0) + €2 > el)) A

IS = “{B}IsID{D}B{B}{s]D{D}B{B}(s]D{D}B\n”

which is equivalent to

not(ef) + el > e2) V not(el + e2 > e0) V not(ed + e2 > el) A

IS = “{B}{s]D{D}B(B}{sID{D}B{B}sID{D}B\n"

The condition not(cO + el > e2) V notel + e2 > e0) Vnot(ed + e2 > el) will be
TRUE il atleast one of the terms is TRUE. Hence we have seven possibilitics. The test

templates corresponding to these seven possibilities would be

T7.a: not(el + el > €2) » not(el + €2 > e0) A not(e0 + e2 > el) »

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B\n”

T7.b: (e0 + €1 > €2) ~ not(el + €2 > e0) A not(ed + €2 > el) A

IS = “{B}(sID{D}B{B}[sID{D}B{B}[s]D{D}B\n"
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T7.c: not(ed + el > e2) * (el + €2 > e0) * not(ed + €2 > e1) *

IS = “{B}[s]D{D}B{B}[sID{D}B{B}[s]D{D}B\n"

T7.d: not(e0 + el > €2) » not(el + e2 > el)) » (e +e2>el) A

IS = “(B}[s]D{D}B(B}[s|D{D}B{B}[sID{D}B\n"

T7.e: (el + el > e2) A (el + €2 > e0) » not(e0 + €2 > el) »

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B\n”

T7.£: not(e0 +el >e2) * (el +e2>e0) * (e0 +e2>el) »

IS = “{B})[s]D{D}B{B}{s]D{D}B{B}[s]D{D}B\n”

T7.g: (0 + el > €2) » not(el + €2 > e0) * (ed +e2>el) A

IS = “(B}(sID{D)B{B}{s]D{D}B(B}sID{D}B\n”

T8: (1+n<3) " not(1+n=3) ~ valid » a(inputlen-1)=* ¢

Which means that the input has less than 3 numbers. Hence the input string would be

IS = “(B}[[s]D{D}B{B}][s]D{D}B\n"

So the test template would be just the input string, i.e.

T8: IS = “(B}[[s]D{D}B{B}](s]D{D}B\n"
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The rcason why we do not have any conditions involving e0, el, and e2 in this case is
that the input string docs not have threc numbers. Since the input is invalid, the function

‘Triangle’ won’t be invoked.

TY: not(1 + n = 3) * not(1 + n < 3) A valid * a(inputlen — 1) = ¢

Which mcans that the input has more than 3 numbers. So the input string would be

IS = “{B}[s]D{D}B{B}[s]D{D} B{B}[s]D{D}{B{B}[s]D{D}}B(B}[s]D{D}B\n"

So the test template would be

T9: 1S = *“{B}[s]D{D}B{B}[s]D{D} B{B}{s]D{DHB{B}{s]D{D}}B{B}{s]D{D}B\n"’

5.2.3 Finding Errors in Specifications

As we shall see, the process of generating test templates could find bugs in the model.

Consider the sequent at node 51 of Figure 7

{-1} edges!1(0) = edges!1(1)
{-2}) edges!1(1) = edges!1(2)

{-3} Error?(Equilateral)

[-4] ((edges!1(0) + edges!1(1)) > edges!1(2))

(-5] ((edges!1(1) + edges!1(2)) > edges!1(0))
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[-6] (edges!1(0) + edges!1(2) > edges!1(1))
[-7] inputlen!l >=0

[-8] integer_pred(n!1)

[-9] integer_pred(sign!1)

{(-10] valid!1

[-11] a!l{inputlen!1 - 1) > 47

[-12] a!l(inputlen!l - 1) < 58

[-13] (n!1=3)

[1] a!l(inputlen!l - 1) = 32

From the above antccedents we have

(valid = TRUE) * a(inputlen - 1) = [0 - 9] A (n = 3). So the input

string would be of the form

IS = *{B}[s]D{D}B{B}[s]D{D}B{B}{s]D{D}B(B}{s)DD{D}\n”

Notice that in the earlier sequents, for €2 we had ‘edges!1(n'l) * sign!'!'l’ in all
the antecedents but now we have edges!1(2). Also observe that in all the earlier
sequents we had (1 + n!l = 3) but now we have (n!1 = 3). To find out why, we
can checek the previous scquents of this branch of proof tree till we find the sequent with

edges (n! 1), (which is sequent 41).



Generating Test Templates via Automated Theorem Proving 52

[-1] inputlen!l>=0

[-2] integer_pred(n!l)

[-3] integer_pred(sign!1)
[-4] valid!l

(-5} a!'l(inputlen'l - 1) > 47
{-6} a!l(inputlen!l - 1) < 58

{-7} Error?(Parse_Input(a!l, inputlen!l, n!1, found_sign!1, FALSE,
edges!1 WITH [(n!1) := a!l(inputlen!] - 1) + 10 * edges!1(n!1) - 48],

sign'l, inputlen!1))

[1] a!l(inputlen!l - 1) =32

As we can sce in the antecedent {-7}, unlike the carlier scquents, edges!l(n!l) was not

multiplied with sign!1. To find out why, we need to look at the model.

Notice that the input string has four numbers. In our model, under these conditions, we will

be cxecuting the following statement

Parse_Input(a, index+1, n, found_sign, false, Edges WITH [(n) =
(edges(n)*10)+get_digit(a(index))], sign, inputlen)

Now, we realize the problem. When we don’t have a space after the last number, in that
casc we arc not multiplying the number with the sign as we did in the case where the last
numbcer was followed by atlcast one space. Also note that we did not even increment ‘n’.

So instead of returning the error ‘ERR_MORE_ARGS’ (since the input string has four
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numbers), we are ignoring the fourth number in the input string and treating it as a valid

input. We found an error in our model.

Note that this actually does not violate the requirements specified for this problem.
Because the problem statement does not mention what the program output should be when
there arc morc than three numbers in the input string. But in scction 5.2.1, we made some
assumptions in order to mecaningfully define the output of the program. The assumption 6
statcs that the program should return ‘ERR_MORE_ARGS’ if the input string has more
than three numbers. Although we did not violate the requirements stated for this program,
we did not do what we wanted to do (i.c., we violated assumption 6). This would have
been an error if the requirements for this program had clearly specified the desired output

for invalid input strings.

Also observe that we were able to prove the conjecture even though the model had an
error. The reason being that the conjecture we proved verifies whether the model exhibits a
specific property and that property does not have to do anything with this error. If we had
tricd to prove some conjecture that is some way related to this error, we would have found
this crror. For instance, if we try to prove the property “If the input has more than 3
integers then the program returns ERR_MORE_ARGS”, then we would have found the

above crror.

As another example, consider the sequent at node 80 of Figure 7.
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[-1] inputlen!1>=0
[-2] integer_pred(n!1)

[-3] integer_pred(sign!1)

[-4] a!l(inputlen!l - 1) = 43

{-5} (m!1=3)

{-6} ((edges!1(0) + edges!1(1)) > edges!1(2))
{-7) ((edges!1(1) + edges!1(2)) > edges!1(0))
{-8} (edges!1(0) + edges!1(2) > edges!1(1))

{-9} (edges!1(2) = edges!1(0))

[1] valid!l

[2] 43=32

{3} found_sign!l

{4} edges!1(0) = edges!1(1)
{5} edges!'1(1) = edges!1(2)

{6} (edges!'1(D) = edges!1(2))

From the formulas [-4], {-5}, [1], and {3}, wc have the following conditions .

a(inputlen - 1) = '+’ A (n = 3) *not(valid)”* not (found_sign). So

the input string would be of the form

1S = “{B}{s]D{D}B{B}[s]D{D}B{B}D{D}B{B}+\n”



Generating Test Templates via Automated Theorem Proving 55

We would expect the model to return ‘ERR_INV_ARG’ since the assumption 5 in section
5.2.1 states that “If a ‘4’ or *-* sign appears, it must be immediately followed by a number
(consisting of one or more digits)”. Once again this docs not violate the requircments
specified for this problem but still we consider it as an crror since it violates our

assumption based on which we developed the model.

Similarly, the sequent 85 of Figure 7 corresponds to the input string of the form

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}D{D}B(B}-\n"

Which will also lead to an error.

As a final example, consider the sequent at node 116 of Figurc 7.

[-1] inputlen!l>=0
[-2] integer_pred(n!1)
[-3] integer_pred(sign!1)

{-4] a!l(inputlen!l - 1) > 47
[-5] a!l(inputlen!l -1) <58

{-6} Error?(ERR_MORE_ARGS)

[1] wvalid!l
(2] a!l(inputlen!l -1)=32

[3] a!l(inputlen!l-1)=43

” Note that when ‘valid” is FALSE, we must have already incremented ‘n’ and multiplied ‘edges!1(n!1)’ with
‘sign!l’ in the previous iteration of the recursion.
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(4] a!l(inputlen!1 - 1) =45

{5} m!1=2)
As we mentioned carlier, we are trying to prove that the model will never return the
symbol ‘Error’ for any input. So PVS will check all possible execution paths through the
program and comparc the output of the model with the symbol ‘Error’. In this case, the
exccution path whose output would be the symbol ‘ERR_MORE_ARGS’ was under

consideration.

From the formulas [-4], [-5], and [1] to {5}, we have the following set of conditions

a(inputlen - 1) = [0 — 9] » not(valid) * not(n = 2).

If (n > 2) then the output ‘ERR_MORE_ARGS’ is what we cxpect since there will be
more than three numbers in the input string. In the case (n < 2), we would expect the
program to return ‘ERR_FEW_ARGS’ not ‘ERR_MORE_ARGS’. So this is another error

in our model. The corrected model, and the test templates arc presented in Appendix C.
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6. Discussion

In the carlier sections we explained the methodology of test template generation based on
the properties stated in the requirements. The properties that should be exhibited by the

software can be catcgorized into 3 classes:

1) Safety property: no execution path should exhibit this property
2) Liveliness property: some execution paths in the model should exhibit this property

3) Invariant property: all execution paths must exhibit this property.

As an example, consider the requirements for the mutual exclusion problem in multi-

programming environment [7].

1) Only one process can execute its critical section at any one time.

2) When no process is executing in its critical section, any process that
requeests entry to its critical section must be permitted to enter with
out delay.

3) When two or more processes compete to enter their respective critical
sections, the selection cannot be postponed indefinitely.

4) No process can prevent any other process from entering its critical
section indefinitely; that is every process should be given a fair

chance to access the shared resource.
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The safcty property is the logical negation of the invariant property. So any safety property
can be paraphrased to get an equivalent invariant property. For example, the property 1 in
the above specification can be thought of as a safety property “There is no exccution path
in which more than one process is in its critical section simultancously”. It can be
paraphrased as an invariant property “In every execution path, there is atmost one process
in its critical section at any given instant”. We can dircctly specify these propertics in PVS

as conjectures and test templates can be generated as explained in the earlier sections.

In the remainder of this section we'll demonstrate the significance of tcst tcmplate
generation from the proof tree with a practical example. This example will also illustrate
the significance of testing for safety properties in real world applications. The requirements

specification for the example is given below:
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Procedure: Scheduler (called every 125ms)
Check_for_Overrun;
Run_Tasks;

End Scheduler;

Procedure: Check_For_Overrun
For Iin 1..Task_List.num {
If (Process_State(l) == RUNNING){
Sct_Error_Register(); -- task did not finish in the earlier run.
Halt_System();

}
Else
Process_State(I) := WAITING; -- ready to be executed in this run.

}
End Check_For_Overrun;

Procedure: Run_Tasks
Current_Task_Index := 1;
While(Current_Task_Index <= Task_List.num){
Process_State(Current_Task_Index) := RUNNING:;
Execute_Task(Current_Task_Index); -- jump to new address and start exccutin g the task
Process_State(Current_Task_Index) := COMPLETE;
Current_Task_Index++,

}

Wait_For_Interrupt(); -- sleep till the 120ms hardware interrupt occurs.
End Run_Tasks,

Figure 8: Pseudo code for the scheduler

Write a program for a scheduler that will schedule a set of fixed number
of tasks in a fixed order. Initially all the tasks will be in the "WAITING"
state. As soon as a task is scheduled, its state is changed to "RUNNING".
Every task has finite execution time (not a constant, since it depends on a
number of factors). A hardware interrupt will be generated every 120ms
and will halt the scheduling process immediately. It is intended that all
the tasks should be scheduled and finish execution within this time limit.

After Sms of dead time (during this period the bus will be inactive), the
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scheduler is re-started and it should start executing the tasks from the
first one. If all the tasks are not finished in the time limit then the
scheduler should detect this when it is entered again after the 5ms dead

time and set the Oth bit in the Error register (#6AS5F) and halt the system.

Note that testing an implementation of the scheduler for functional correctness is a difficult
problem becausc there arc an infinite number of states where an interrupt can occur.
Testing a program for all these cases is not only impractical but is not possible. So we
cannot prove the functional correctness of this program by conventional testing methods.
This scheduler might be part of a safety critical system and hence proof of its functional
correctness may be essential. We might model the scheduler algorithm in a formal
language and prove its functional correctness. However, our formal specification itself
might not be an exact representation of the actual implementation. There might cxist some
inconsistencies between the model and the actual implementation. So, If we find some
error in the specification, we would want to test the implementation for that error. If the
formal specification fails to exhibit a property, we would like to find a test case

corresponding to this failure and test our implementation for that particular test case.

Modecling intcrrupts in PVS is difficult, so here we present only the pseudo code. The
pscudo code for scheduler is shown in Figure 8. The scheduler is called every 125ms after
the 5ms dead interval. Scheduler first calls Check_for_Overrun to see whether any of the
tasks arc in the RUNNING state when the 120ms hardware interrupt occurred. If so, it’ll

sct the error register and halt the system. Otherwise all the processes’ states are set to
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WAITING. The scheduler then calls the function Run_Tasks to execute the tasks.
Run_Tasks will set cach task’ state to RUNNING just before jumping to the tasks’ address.
After the task is finished, control is returned to the Run_Task procedure and thc tasks’
state is sct to COMPLETE. This procedure is repeated for all the tasks starting with the

first.

Now, we are intcrested in knowing whether this code will satisfy the requirement “If any
of the tasks did not finish in the previous run, then the 0™ bit of the Error Register should
be sct and the system should be halted”. If we model this scheduler algorithm in PVS, we
can specifiy the above property as “Error Register is set iff there exists a task that did not
finish in the carlier run”. When we attempt to prove the above conjecture in PVS, we will
fail to prove it. The model (assuming it is developed based on the pseudo code presented
in Figurc 8) will not be able to detect that some tasks did not execute if the hardware
interrupt occurs after execution of onc task and before the start of exccution of the next
task (i.c. when the control is in scheduler). This might lead lead to stack overflow and
other scrious problems. Finding such a subtle problem with conventional testing would be

very difficult if not impossible.
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7. Conclusions

Conventional testing methods fail to prove the correctness of the program because of very
large input space. In the presence of evolving specifications and code changes it is not
sufficicnt to prove the correctness of the specification because of the inconsistencics that
exist between the formal specification and implementation. We suggested and
demonstrated a new method of testing software based on the formal specification. In this
approach we will bc generating test templates corresponding to the properties stated in the

requirements. A bricf overview of the procedure for gencrating test templates follows.

The program that needs to be verified is modeled in the fomal specification/verification
system, Prototype Verification System (PVS). The properties that should be exhibited by
the softwarc are stated as conjectures in the model. PVS proof checker consists of a
number of proof commands that can be used to prove the conjectures. The proof
commands applied in order to prove the conjecture can be built into a proof trec. Based on

the proof trec we generate test templates corresponding to the conjecture (or the property).

In the case we fail to prove a conjecture, we will generate test templates corresponding to
the proof goals that we could not prove. Inability to prove a conjecture based on the model

does not necessarily mcan that the actual implementation has some error. It could be
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becausc of the inconsistencies between the model and the implementation or because of the
insulficicnt information in the model (i.e., in the case of partial specification / verification).
So we gencrate test templates corresponding to the cases for which the model fails to
exhibit the specified property. Then, we can test the actual implementation for these cases
Lo sce whether the actual implementation also has the crror that has been identified in the
modcl. If so, we correct both the implementation and the model and try to prove all the
propertics based on the corrected model. Otherwise, we correct the model to rectify the

problem.

If we are successful in proving a conjecture, then we derive test templates corresponding to
cach of the leaves of the proof tree. However, problems arise in devising a sct of rules for
gencrating test cases, since there is no unique way to prove a property. Different set of
proofl commands (or proof strategies) can be used to prove the same conjecture in different
ways. The proof tree and hence the generated test templates vary according to the set of
proof commands used to prove the property. So we proposed a set of heuristics that aid in

gencrating test templates for valid properties.

We also claimed that proving a conjecture successfully does not imply that the
implementation or the model is correct. It only means that the stated conjecture is true with
respect to the modcl. In the case where the requirements specification of a problem does
not have cnough details, the implementation has to make certain reasonable assumptions.

To this end, we demonstrated that errors (with respect to the assumptions madc) might
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exist in the model (or in the implementation) even though we could prove the conjectures.
We cxemplificd the approach to finding these errors during the process of test template

gencration.

We also presented a strategy for organizing the test templates into the Test Template
Hierarchy (TTH), which will be uscful in identifying test templates with a specific
property. TTH is especially uscful in the casc of complex problems where the number of
test templates gencrated could casily become unmanageable. Finally, we discussed the

significance of our approach to testing software with a practical example.

The most interesting area for {uture work would be the development of a tool based on our
approach. The tool should automatically parse the generated proof for every conjecture and
shall derive the test templates corresponding to them. The process of organizing the test
templates into a TTH can also be automated. The tool should also allow the user to select
test templates with a specific property. The user can then test the actual implementation for

a sct of selected test cases based on the test templates.

It will also be interesting to study how each of the proof commands provided by the PVS
proof checker affect the proof tree. This will help improving the set of heuristics provided
in scction 4.3. It will also form the basis for automating the test template gencration and

building the tool described earlicr.
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Appendix A: PVS Primer

Prototype Verification System (PVS) is a specification and verification system developed
by SRI International. It consists of a specification language integrated with support tools
and a theorem prover. PVS has a sophisticated type system containing predicatc subtypes,
dependent subtypes and abstract datatypes such as lists and trees. The standard PVS types
include numbers (intcgers, rcals, naturals, ctc.) records, tuples, arrays, functions, sets,
sequences, lists, and trees, etc. PVS has a very strong type checking system that will
automatically generate proof obligations whenever there is some ambiguity. PVS
specifications are organized into parametrized theories that may contain assumptions,
definitions, axioms and thecorems. PVS expressions provide the usual arithmetic, logical
operators and quantifiers. Name overloading is allowed in PVS. An extensive prelude of

built-in theories provides numerous useful definitions and lemmas.

PVS has a powerful intcractive theorem prover / proof checker. The PVS theorem prover
provides a collection of powerful primitive inference procedures that are applied
intcractively under user guidance. The primitive inferences include propositional and
quantificr rulcs, induction, rewriting, and decision procedures for linear arithmetic. User
defined procedures can combine the primitive inferences to yield higher-level proof

stratcgics. Proofs yicld scripts that can be edited, attached to additional formulas, and
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rerun. This allows many similar theorems to be proved efficiently. The application of a
procedure can either gencrate further subgoals or prove a subgoal. PVS’s automation

sulfices to prove many straightforward results automatically.

Numerous tutorials, documents and rescarch papers arc available on PVS. For more

information on PVS pleasc refer to [8]-[13].
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Appendix B: Modified Triangle Problem Specification

triangle6 : THEORY

BEGIN

X, Y, Z: VAR int

char_type: TYPE = {x:nat | x < 256)

Rewrn_type: TYPE = {ERR_FEW_ARGS, ERR_MORE_ARGS, ERR_INV_ARG,
ERR_NOT_A_TRIANGLE, Scalene, Isosceles, Equilateral, Error)
MAXLEN : posnat;

Index_type: TYPE = {n:natl n < MAXLEN}

Character_Array_type: TYPE = ARRAY [Index_type --> char_type]
Integer_Array_type: TYPE = ARRAY [Index_type --> int]

valid, found_sign : VAR boolean

a: VAR Character_Array_type

edges . VAR Integer_Array_type

v,n,sign ;: VAR int

inputlen : VAR nat

current, index: VAR Index_type

NullCharArray(i: Index_type): char_type = 10
NulllntArray(i: Index_type): int = 0

isdigit?(c: char_type): boolean = IF ¢ > 47 AND ¢ < 58 THEN True ELSE False ENDIF
get_digit(c: char_type): int = ¢ - 48

issign?(c: char_type): boolean = IF ¢ = 43 OR ¢ = 45 THEN Truc ELSE False ENDIF
get_sign(c: char_type): int = IF ¢ = 43 THEN 1 ELSIF ¢ = 45 THEN -1 ELSE 0 ENDIF
isspace?(c: char_type): boolean = IF ¢ = 32 THEN True ELSE False ENDIF
isnewline?(c: char_type): boolean = IF ¢ = 10 THEN True ELSE False ENDIF

Triangle(x, y, z): Return_type =
IF ((x + y) > z) AND ((y + 2) > x) AND ((z + x) > y) AND (x > 0) AND (y>0) AND (z>
0) THEN
IF x = y AND y = z THEN Equilateral
ELSIF ((x=y) AND (y/=z)) OR
((y=12) AND (x /= 2)) OR
((x =2z) AND (x /= y)) THEN Isosceles
ELSIF x /=y AND y /= z AND z /= x THEN Scalene
ELSE Error
ENDIF
ELSE ERR_NOT_A_TRIANGLE
ENDIF
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Parsc_Input(a, index, n, found_sign, valid, edges, sign, inputlen): RECURSIVE Return_type =
IF index = inputlen THEN
IF ((n = 3) AND valid = Falsc) OR ((n = 2) AND valid = True) THEN
Triangle(edges(0), edges(1), edges(2))
ELSIF ((n < 3) AND valid = False) THEN ERR_FEW_ARGS
ELSE ERR_MORE_ARGS

ENDIF
ELSE
IF valid = true THEN
IF isspace?(a(index)) THEN % if space then
Parse_Input(a, index+1, n+1, False, false,
edges WITH [(n) := edges(n)*sign], 1, inputlen
ELSIF isdigit?(a(index)) THEN
Parse_Input(a, index+1, n, found_sign, false, edges WITH [(n) :=
(edges(n)*10)+ get_digit(a(index))], sign, inputlen)
ELSE ERR_INV_ARG
ENDIF
ELSE
IF isspace?(a(index)) AND found_sign = False THEN % if spacc then
Parse_Input(a, index+1, n, False, false, edges, sign, inputlen)
ELSIF issign?(a(indcx)) AND found_sign = False THEN % if +, - then
Parse_Input(a, index+1, n, True, false, edges,
get_sign(a(index)), inputicn)
ELSIF isdigitXa(index)) THEN
Parse_Input(a, index+1, n, found_sign, true, edges WITH [(n) :=
(edges(n)*10)+get_digit(a(index))), sign, inputlen)
ELSE ERR_INV_ARG
ENDIF
ENDIF
ENDIF

MEASURE (LAMBDA a, index, n, found_sign, valid, edges, sign, inputlen: inputlen - index);

%%proved,
%Parse_Input conjecture6; i/p string GENERIC! case ‘index = inputlen - 17
parse_conj6: CONJECTURE Parse_Input(a, inputlen - 1, n, found_sign, valid,
edges, sign, inputlen) /= Error
END triangle6
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Appendix C: Complete Triangle Problem Specification

Corrected PVS specification of the modificd ‘triangle’ example and the test templates

trianglc8 : THEORY

BEGIN

X, ¥,z VAR int
char_type: TYPE = {x:nat | x < 256}

%Triangle_type: TYPE = {ERR_NOT_A_TRIANGLE, Scalene, Isosceles, Equilateral, Error}
% Validate_error_type: TYPE = {ERR_FEW_ARGS, ERR_MORE_ARGS, ERR_INV_ARG,

CORRECT})
Return_type: TYPE = {ERR_FEW_ARGS, ERR_MORE_ARGS, ERR_INV_ARG,

ERR_NOT_A_TRIANGLE, Scalene, Isosceles, Equilateral, Error}

MAXLEN : posnat;

Index_type: TYPE = {n:natl n < MAXLEN}

Character_Array_type: TYPE = ARRAY [Index_type --> char_type]
Integer_Array_type: TYPE = ARRAY [Index_type --> int]

valid, found_sign : VAR boolean

a: VAR Character_Array_type

edges : VAR Integer_Array_type

v.1,sign : VAR int

inputlen : VAR nat

current, index: VAR Index_type

NuliCharArray(i: Index_type): char_type = 10
NulllntArray(i: Index_type): int=0

%Modeling the input.

%% This model works under the following assumptions:

%% 1. All the values arc seperated by one or more spaces.

%% 2. An integer can be optionally (immediately) preceded by a sign (‘+” or -9
%% 3. Any character other than (‘0°-*9", *+’, ‘-*) will result in an error.

%% 4. The input linc will be terminated by a NL character.

%lemmal: LEMMA FORALL (x,y: char_type): char(x) = char(y) IFF x =y

isdigit?(c: char_type): boolean = IF ¢ > 47 AND ¢ < 58 THEN True ELSE False ENDIF
get_digit(c: char_type): int= ¢ - 48
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issign?(c: char_type): boolean = IF ¢ = 43 OR ¢ = 45 THEN True ELSE False ENDIF
gel_sign(c: char_type): int = IF ¢ = 43 THEN 1 ELSIF ¢ = 45 THEN -1 ELSE 0 ENDIF
isspace?(c: char_type): boolean = IF ¢ = 32 THEN True ELSE False ENDIF
isnewline?(c: char_type): boolean = IF ¢ = 10 THEN True ELSE False ENDIF

Triangle(x, y. z): Return_type =
IF((x+y)>z) AND ((y +2)>x) AND ((z+ x) > y) THEN
IF x = y AND y = z THEN Equilateral
ELSIF ((x =y) AND (y /= z)) OR
((y=1z) AND (x /=2)) OR
((x =z) AND (x /= y)) THEN Isoscelcs
ELSIF x /=y AND y /=z AND z /= x THEN Scalene
ELSE Error
ENDIF
ELSE ERR_NOT_A_TRIANGLE
ENDIF
Parse_Input(a, index, n, found_sign, valid, edges, sign, inputlen): RECURSIVE Return_type =
IF index = inputlen THEN %% index > MAXLEN??
IF ((n = 3) AND valid = False) OR ((n = 2) AND valid = True) THEN
Triangle(edges(0), edges(1), edges(2))
ELSIF ((n < 3) AND valid = False) OR (n <2) THEN ERR_FEW_ARGS
ELSE ERR_MORE_ARGS
ENDIF
ELSE
IF valid = true THEN
IF isspace?(a(index)) THEN % if space then
Parse_Input(a, index+1, n+1, False, false,
edges WITH [(n) := edges(n)*sign], 1, inputlen)
ELSIF isdigit?(a(index)) THEN
IF isnewline?(a(index+1)) THEN
Parse_Input(a, index+1, n+1, found_sign, false, edges
WITH [(n)
= ((edges(n)*10)+get_digit(a(index))) *
sign], sign,
inputlen)
ELSE
Parse_Input(a, index+1, n, found_sign, false, edges
WITH [(n) :=
(edges(ny*101+-get_digit(a(index))], sign,
inputlen)
ENDIF
ELSE ERR_INV_ARG
ENDIF
ELSE
IF isspace?(a(index)) AND found_sign = False THEN % if space then
Parse_Input(a, index+1, n, False, false, edges, sign, inputlen)
ELSIF issign?(a(index)) AND found_sign = False THEN % if +, - then
IF isdigit?(a(index+1)) THEN
Parse_Input(a, index+1, n, True, false, edges,
get_sign(a(index)), inputlen)
ELSE ERR_INV_ARG
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ENDIF
ELSIF isdigit?(a(index)) THEN
IF isncwline?(a(index+1)) THEN
Parse_Input(a, index+1, n+1, found_sign, true,
edges WITH [(n) :=
((edges(n)*10)+get_digit(a(index)))*
sign],
sign, inputlen)
ELSE
Parse_Input(a, index+1, n, found_sign, true,
edges WITH [(n) :=
(edges(n)*10)+get_digit(a(index))],
sign, inputlen)
ENDIF
ELSE ERR_INV_ARG
ENDIF
ENDIF
ENDIF

MEASURE (LAMBDA a, index, n, found_sign, valid, edges, sign, inputlen: inputlen - index),

parse_conjl: CONJECTURE Parse_Input(a, inputlen - 1, n, found_sign, valid, edges, sign, inputlen)
/= Error

END triangle8

The proof tree for the conjecture “parse_conjl” of this model will be very similar to Figure
7. We can generate test templates from the proof tree exactly the same way we generated

test templates in the section 5.2.2. Here we present the final test templates

TI1: (e0=el) * (el =€2) * (e0 + el > €2) » (el +e2 > e0) * (e0+e2>el)

IS = ““{B}[sID{D}B{B)}[s]D{D}B{B}{s]D{D}B\n"

T2: (el =el)” (el /=e2) " (e0 +el>e€2) " (el +e2>el) » (e0 +e2>el) A

IS = “(B}[s]D{D}B{B}[s]D{D}B{B}{s]D{D}B\n’’



Generating Test Templates via Automated Theorem Proving

74

T3: (el =e2) M (e /=¢€2) *(e0+el>e2) M (el +e2>el) * (e +e2>el)

IS = “{B}[s|D{D}B{B}[s]D{D}B{B}{s]D{D}B\n”

Td: (e0=e2) (e /=el) " (eD+el>e2) " (el +e2>el) * (e0 +e2>el) A

IS = “{B}[s]D{D}B{B}[sID{D}B{B}[s]D{D}B\n"

T5: (eb/=el) (el /=€2) * (e2/=¢0) * (e0 + el >¢2) * (el +e2>e0) A

(€0 + €2 > e1) A IS = “{B}{s]D{D}B{B}[s]D{D}B{B}[s]D{D}B\n”’

T6: (e0 + el > €2) * (el + €2 > e0) * (e + €2 > el)
A not((e0 /= el) * (el /=€2) * (e2 /= eD)) » not((e0 = el) * (el /= €2))
A not((el = €2) * (e0 /= €2)) * not((e0 = €2) * (el /=el))

A not((e0 = el) » (el = e2)) * IS = “{B}[s]D{D}B{B}[s}D{D}B{B}[s]D{D}B\n”

T7.a: not(e0 + el > e2) » not(el + €2 > el))  not(ed + €2 >el) A

IS = “(B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B\n"

T7.b: (0 + el > €2) * not(el + €2 > e0) * not(el + €2 > el) *

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B\n”’

T7.c: not(e0 + el > e2) » (el +e2 > el) * not(ed + 2> el) A

IS = *{B}[s]D{D}B{B}(s)D{D}B{B}[s]D{D}B\n”

T7.d: not(e0 + el > €2) » not(el +e2>e0) * (el +e2>el}

IS = “{B}[s]D{D}B{B}{s]D{D}B{B}[s]D{D}B\n"
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T7.e:(e + el >e2) » (el + €2 > el) » not(ed +e2 > el) A

IS = “{B}{sID{D}B(B}(s]D{D}B(B}{s]D{D}B\n"

T7.£:n0t(e0 + el >e2) * (el +e2>€0) * (e +e2>el) A

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B\n"

T7.g: (e + el >e2) A not(el +e2>e) A (e +e2>el) A

IS = “(B}(sID(D}B(B}[s]D{D}B(B){sID{D)B\n”

T8: IS = “{B}[[s]D{D}B{B}][s|D{D}B\n"

T9: IS = “{B}[s]D{D}B{B}[s]ID{D}{B{B}[s]D{D}}B{B}{s]D{D}B\n”

T10: (e0=el) * (el =€2) " (eD+el>e2) (el +e2>e0) * (eD+e2>el) A

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}\n"

Ti1: (e0=el) " (el /=€2) " (eD+el>e2) " (el +e2>el) * (el +e2>el) A

IS = “(B}{sID{D}B(B}[s]D{D}B{B}[s]D{D}\n”

T12: (el=€e2) * (e0/=e2) " (el +el >e2) " (el +e2>e0) * (e0 +e2>el) A

IS = “{B}[s]D{D}B{B}{s]D{D}B{B}[sID{D}\n”

T13: (e0=€2)* (e0/=¢€l) " (el +el >e2) " (el +e2>ed) * (el +e2>el) A

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}\n"”
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T14: (e0 /=el) * (el /=€2) * (e2/=€0) * (e0 + €1 > €2) * (el + €2 > €0) ~

(€0 + €2 > el) A IS = “(B}[s|D{D}B{B}[s]D{D}B{B}[s]D{D}\n"

T15: (e0 + el >€2) * (el +e2>e0) * (0 + €2 > el)
A not((el) /= el) » (el /= e2) * (e2 /= D)) » not((e0 = el) » (el /= e2))
A not((el = e2) * (el /= €2)) * not((ed = €2) » (el /= el))

A not((e0 = e1) A (el = e2)) A IS = *(B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}\n"

T16.a: not(e0 + el > e2) » not(el + €2 > e0) » not(ed + e2 > el) A

IS = “{B}{s]D({D}B{B}[s]D{D}B{B}[s]D{D}\n"

T16.b: (e0 + el > €2) * not(el + €2 > e0) » not(ed + €2 > el) »

IS = “{B}Is]D{D}B{B}[s]D{D}B{B}[s]D{D}\n”

T16.c: not(el) + el > €2) » (el + €2 > el)) * not(ed + 2 >el) A

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}(s]D{D}\n”

T16.d: not(el + el > e2) * not(el +e2 > ed) * (e0 +e2>el) *

IS = *{B}[s]D{D}B{B}[s]D{D}B{B}{s]D{D}\n”

T16.e: (el + el > €2) * (el + €2 > €0) * not(ed + €2 > el) A

IS = “{B){s]D{D}B{B}{s]D{D}B{B}[s]D{D}\n"
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T16.f: not(eD + el > e2) * (el + €2 > e0) A (e0+e2>el) A

IS = *(B}(s]D{D}B{B}{sID{D}B(B}[s]D{D}\n"

T16.g: (€0 + el > €2) » not(el + 2 > e0) » (e) + €2 > el) A

IS = “(B}{sID{D}B(B}(sID{D}B{B}{s]D{D}n"

T17: 1S = *“{B}([s)D{D}B{B}][s|D{D}\n"’

T18: IS = “{B}[s]D{D}B{B}[s]D{D}HB{B}[s]D{D}}B{B}{s]D{D}\n”

T19: (e0 =el) » (el = €2) » (e0 + el > e2) * (el +e2>el) N (ed+e2>el) A

IS = “{B}IsID{D}B{B}{s]D{D}B{(B}[s]D{D}B{B}\n"

T20: (0 =e1) * (el /= €2) * (e0 + €1 > €2) * (el + €2 > e0) (0 + €2 > el)

IS = “(B}(s|D{D}B{B}[s|D{D}B{B}[s]D{D} B{B)\n”’

T21: (el = e2) * (e0 /= €2) * (el + €l > €2) * (el +€2 > el)) A (e0+e2>el) A

IS = *{B}is]D(D}B{B}[s]D{D}B{B}{s]D{D} B{B}\n"

T22: (e0=€2) " (e0/=€l) * (0 + el >€2) A (el +€2> €0) » (el + €2 > el) A

IS = “{B}{s]D{D}B(B)[s]D{D}B{B}[s]D{D} B(B}\n"

T23: (e0/=el) * (el /= €2) ~ (€2 /= €0) » (e0 + €] > €2) 7 (el +e2>e0) A

(€0 + €2 > e1) ~ IS = “(B}{s]D{D}B{B}[s]D{D}B{B}[s]D{D} B{B)\n”
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T24: (e0 +el >e2) * (el +e2>¢€0) * (el +e2>el)
A not((e0 /= el) » (el /= €2) * (e2 /= €0)) * not((e0 = el) * (el /= e2))
A not((el = e2) A (e0 /= €2)) » not((e0 = e2) " (el /= el))

A not((e0 = e1) * (el = €2)) A IS = “(B}[s]D{D}B{B)}[s]D{D}B{B}[s|D{D} B{B}\n”

T25.a: not(el + el > e2) ~ not(el + €2 > e0) » not(el + €2 > el) »

IS = “{B}[s]D{D}B{B}(sID{D}B{B}[s]D{D}B{B }\n"”

T25.b: (e0 + el > €2) » not(el + €2 > e0) * not(ed + e2 > el) *

1S = “{B}[s]D{D}B{B}{sID{D}B{B}{s]D{D} B{B}n”

T25.c: not(e + el > €2) * (el + €2 > b)) » not(e0 +e2 > el) *

IS = “(B}[s]D{D}B{B)}[sID{D}B{B}[s]D{D} B{B}\n"

T25.d: not(el + el > e2) * not(el + 2> e0) * (e0 +e2>el) *

IS = “{B}[s]D{D}B{B}{s]D{D}B{B}{s]D{D} B{B\n”

T25.e: (e + el > e2) » (el + €2 > e0)  not(e0 + €2 >el) *

IS = “(B}Is]D{D}B{B}(s]D{D}B{B}(s]D{D} B{B}n”

T25.f: not(ed) + el >e2) » (el +e2>el) * (0 +e2>el) A

IS = “{B}[sID{D}B{B}{s]D{D}B{B}{s}D{D} B{B An”
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T25.g:(e0 + €1 > €2) * not(el + €2 >e0) » (e +e2>el) »

IS = “{B}(sID{D}B{B}(s]D{D}B{B}[sID(D} B(B)\n"

T26: 1S = “(B}[[s]D{D}B(B}[s]D{D} B{B}\n"

T27: IS = “{B)[sID{D}B{B)[sID{D}{B{B}[s]D{D}}B{B}{sID{D} B{B}\n"

T28: (eD=el) " (el =e2) (e +el>e2) " (el +e2>el) A (eD+e2>¢el) A

1S = “{B}[s]D{D}B{B}[s]D{D}B{B}[s|Dn’*

T29: (e0=el) *(el/=€2) *(e0 +el >e2) (el +e2>e0) » (e0 +e2>el) A

IS = “{B}[sID{D}B(B}{s|D{D}B(B}[s]D\n”

T3: (el =e2) A (eD/=€2) " (e +el>e2) *(el +e2>el) * (D +e2>el) A

IS = “{B}[s|D{D}B(B)[sID{D}B{B}[s]D\n”

T31: (e0=e2) * (e /=el) » (e0 + el >e2) * (el +e2>¢0) » (eD +e2>el) A

IS = “(B}{s]D{D}B(B}[s]D{D}B{B}[s]D\n"

T32: (el /=el) A (el /=e2) " (e2/=¢0) * (e0+ el >e€2) » (el +e2>e0) ~

(e0 + €2 > e1) * IS = *{B}[s]D{D}B{B}[s]D{D}B{B}[s|D\n”

T33: (e + el >e2) * (el +e2> el) » (e0 + €2 > el)
A not((e0 /= el) * (el /= €2) * (e2 /= eD))) » not((ed = el) * (el /= €2))
A not((el = €2) * (el /= €2)) * not((el) = e2) » (el /= el))

A not((e0 = el) A (el = €2)) * IS = “{B}[s]D{D}B{B}(s|D{D)B{B}[s]D\n"
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T34.a: not(e0 + el > e2) » not(el + 2 > e0) » not(e0 + e2 > el) A

IS = “{B}(s]D{D}B{B}Is]D{D}B{B}[s]D\n"

T34.b: (e0 + el > e2) * not(el + €2 > €0) » not(e0 + 2 > el) A

IS = “{B}{s]D{D}B{B}[s]D{D}B{B}{s]D\n"

T34.c: not(e0 + el > €2) * (el + €2 > eD) » not(el + 2 > el) A

IS = “{B)[s]D{D}B{B}{s]D{D}B{B}[s]D\n"

T34.d: not(e0 + el > e2) » not(el + €2 > ) ~ (e0+e2>el) A

IS = “{B}{sID{D}B{B}[s]D{D}B{B}[s]D\n”

T34.e: (e0 + el > e2) » (el + €2 > e0) ~ not(el + €2 > el) ~

IS = *“{B}{s]D{D}B{B}[s]D{D}B{B}{s]D\n”

T34.f: not(ed + €1 > e2) * (el + €2 > e0) * (e0 + €2 > el) A

IS = “(B)[s]D{D}B{B}[s]D{D}B{B}{s]D\n"’

T34.g: (e0 + el > €2) » not(el + €2 > e) » (e0 + €2 > el) ~

IS = *{B}{s]D{D}B{B}[s]D{D}B{B}[s]D\n"

T35: IS = *“{B)[[s]D{D}B{B}|[s]D\n”’

T36: IS = “{B}[s|D{D}B{B}[sID{D}{B{B}[s]D{D}}B{B}[s|D\n’’
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T37: (e0=el)* (el =€2) * (e0 + el >e2) A (el+e2>el) *(e0+e2>el) A

IS = “{B}[sID{D}B{B}[sID{D}B{B}{sID{D}B(B}+\n”

T38: (0 =el) (el /=€2) * (eD + €l > €2) A (el + €2 > e0) A (e0+e2>el)”

IS = “{B}{s]D{D}B{B)(s]D{D}B{B}(s]D{D}B{B}+\n”

T39: (el =€2) ” (e0/=¢€2) * (e0 +el >e2) A (el +e2> ed) A (e0+e2>el) A

IS = “{B}[s]D{D}B{B}{s]D{D}B{B}[s]D{D}B{B}+\n”’

T40: (e0 = €2) * (e /=€) * (e0 + €l > €2) * (el + €2 > e0) » (e + €2 > el) A

IS = “{B}[s]D{D}B{B}{s]D{D}B{B}{s]D{D}B{B}+\n”’

Td1: (e0/=el) » (el /=€2) ~ (e2/=€0) » (e + el > €2) » (el + €2 > ed) ~

(e0 + €2 > e1) ~ IS = “{B}[s|D{D}B{B}[s]D{D}B{B}{s]D{D}B{B)+\n”

Td2: (e0 +el>e2) » (el +e2>e0) » (e0 + €2 > el)
" not((e0 /= el) * (el /= €2) » (e2 /= e0)) * not((ed = el) * (el /= €2))
* not((el = e2) * (e0 /= €2)) * not((ed = e2) » (e0 /= el))

" not((e0 = e1) * (el = e2)) * IS = “(B}[s]D{D}B{B}[sID{D}B(B}[s]D{D}B{B}+\n"

T43.a: not(ed + el > e2) * not(el + €2 > e0) » not(ed + 2 > el) A

IS = “{B}(sID{D}B{B}[sID{D}B(B}(s]D{D}B(B}+\n"



Generating Test Templates via Automated Theorem Proving

T43.b: (0 + el > €2) ~ not(el + €2 > €0) » not(e0 + €2 > el) A

IS = “{B}[sID{D}B{B}{s]D{D}B{B}[s]D{D}B{B }+\n"’

Td3.c: not(ed + el > €2) » (el + €2 > e0) » not(ed + €2 > el) #

IS = “(B}sID{D}B{B)[s]D{D}B{B}{sID{D}B{B}+\n”

T43.d: not(e0 + el > e2) » not(el + €2 > e0) * (e +e2>el)

IS = “{B}{s]D{D}B{B}{s]D{D}B{B}(s]D{D}B{B}+\n”

Td3.e: (e0 + el > €2) A (el + €2 > e0) » not(el + €2 > el) A

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}[s]D{D}B{B}+\n’’

T43.f: not(ell + el > €2) » (el +e2> el) * (e0 + €2 > el) A

IS = “{B}{s]D{D}B{B)}(s]D{D}B{B}[s]D{D}B{B}+\n”

Td3.g: (e0 + el > €2) ~ not(el + €2 > e0) » (e0 + €2 > eh A

IS = “{B}(s]D{D)B{B}{sID{D}B{B}sID{D}B(B}+\n”

T44: IS = “(B)[[s]D{D}B{B}][s|D{D}B{B}+\n”

T45: IS = “(B}[s|D{D}B{B}{s]D{D}{B{B}[s]D{D}}B{B}[s]D{D}B{B}-\n"”

T46: (e0=el) * (el =€2) * (eD + el >e€2) » (el +€2 > e)) * (e0+e2>el) A

IS = “{B}[sID{D}B{B}(sID{D}B{B}(sID{D}B(B}-\n”
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Td7: (e0=el) ~ (el /=€2) * (e0 + €1 > €2) " (el +e2>el) " (ed + €2 > el) A

IS = “(B}[s]D{D}B{B}[sID{D}B{B}{s]D{D}B{B}-\n"

T48: (el =€2) » (e0 /=€2) * (e0 + el > e2) » (el +e2>e0) ” (e0+e2>el) A

IS = “(B}[s]D{D}B{B}(sID{D}B{B}[s]D{D}B{B}-\n”

T49: (e0=e€2) " (e0/=€l) * (eD +el >e2) * (el +e2> e0) A (e0+e2>el) A

IS = “(B}(s]D{D}B(B}[s]D{D}B{B}[sID{D}B{B}-\n’

T50: (e0/=el) * (el /=e2) * (e2 /= ed) *(e0+el>e2) (el +e2> ed) »

(e0 + €2 > el) A IS = “{B}[s|D{D}B{B}[sID{D}B(B}[s|D{D}B{B}-\n”’

T51: (e0 + el >e€2) ~ (el + €2 > e0) » (e0 +e2 > el)
" not((e0 /= el) * (el /= €2) * (€2 /= e0)) » not((e0 = el) * (el /= e2))
" not((el = e2) * (el /= €2)) * not((ed = e2) * (el /= el))

* not((e0 = e1) * (el = €2)) * IS = “{B}[s]D{D}B{B}[sID{D}B(B}[s]D{D}B{B}-\n"

T52.a: not(eD + el > e2) » not(el + €2 > €0) * not(el + €2 > el) ~

IS = “{B}{sID{D}B{B}[s]D{D}B(B}[s]D{D}B{B}-\n*’

T52.b: (e0 + el > €2) * not(el + €2 > €0) » not(ed + €2 > el) ~

IS = “{B}[s]D{D}B{B}{s]D{D}B{B}(s]D{D}B{B}-\n”

T52.c: not(e0 + el > €2) * (el + €2 > D) » not(e0 + €2 > el) ~

IS = “{B}{s]D{D}B(B}[s]D{D}B{B}{s]D{D}B{B}-\n"
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T52.d: not(e0 + el > €2) * not(el + €2 > el) " (e0+e2>el)”

IS = “{B}[s]D{D}B{(B}[s]D{D}B{B)[s]D{D}B{B}-\n”

T52.e:(e0 + el > e2) * (el + €2 > el) A not(e0 + e2 >el) A

IS = “{B}[s]D{D}B{B}[s]D{D}B{B}{s]D{D}B{B}-\n"

TS52.f: not(e0 + el > e2) * (el +e2>e0) A (e0+e2>el)?

IS = “{B}[s]D{D}B{B}{s]D{D}B{B}{s]D{D}B{B}-\n"

T52.g:(e0 + €1 > €2) » not(el + e2 > el) » (el + €2 > el) A

IS = *“{B}[s]D{D}B{B}[sID{D}B{B}[s]D{D)B{B}-\n”’

T53: IS = “{B}[[s]D{D}B{B}][s]D{D}B{B}-\n”

T54: IS = “{B}[s]D{D}B{B}[s]D{D}{B{B}[s]D{D}}B{B}[s]D{D}B{B}-\n”



